Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 1015271, 2022.
Article in English | MEDLINE | ID: covidwho-2198870

ABSTRACT

Introduction: Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Severe cases of COVID-19 are characterized by an intense inflammatory process that may ultimately lead to organ failure and patient death. Qingfei Paidu Decoction (QFPD), a traditional Chines e medicine (TCM) formula, is widely used in China as anti-SARS-CoV-2 and anti-inflammatory. However, the potential targets and mechanisms for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects remain unclear. Methods: In this study, Computer-Aided Drug Design was performed to identify the antiviral or anti-inflammatory components in QFPD and their targets using Discovery Studio 2020 software. We then investigated the mechanisms associated with QFPD for treating COVID-19 with the help of multiple network pharmacology approaches. Results and discussion: By overlapping the targets of QFPD and COVID-19, we discovered 8 common targets (RBP4, IL1RN, TTR, FYN, SFTPD, TP53, SRPK1, and AKT1) of 62 active components in QFPD. These may represent potential targets for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects. The result showed that QFPD might have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation-related pathways. Our work will promote the development of new drugs for COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Network Pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Protein Serine-Threonine Kinases , Retinol-Binding Proteins, Plasma
2.
Natural Product Communications ; 17(8), 2022.
Article in English | Web of Science | ID: covidwho-2005549

ABSTRACT

Objective: To explore the potential active components of Chaiyin particles (CYPs) in the treatment of coronavirus disease 2019 (COVID-19) and their mechanism of action using network pharmacology and molecular docking technology. Methods: Based on the components of CYPs, we obtained potential targets of the interaction between CYPs and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The potential targets were analyzed by protein-protein interaction, gene ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The key active components of CYPs were subjected to molecular docking with 3-chymotrypsin-like protease, angiotensin-converting enzyme II (ACE2), RNA-dependent RNA polymerase, and papain-like protease. The components that may bind to the key target proteins of SARS-CoV-2 were screened to obtain the potential active components, targets and pathways for CYP treatment of COVID-19. The above-described network analysis results were then verified experimentally. Results: CYPs may prevent and treat COVID-19 by inhibiting the release of inflammatory factors such as IL-6 and TNF-alpha;participating in the AGE-Rage signaling pathway, the HIF-1 signaling pathway, and other anti-inflammatory, antiviral, and immune regulatory signaling pathways;and blocking ACE2 via fortunellin and baicalin. Conclusion: This work illustrated that CYPs mainly play an anti-inflammatory and immunomodulatory role in COVID-19 prevention and treatment. The potential active components and molecular mechanism of CYPs can provide theoretical support and a pharmacological basis for further development and utilization of CYPs in the prevention and treatment of COVID-19. These results provide important insights into future studies of Traditional Chinese medicines (TCMs) modernization and prevention.

3.
Phytomedicine ; 85: 153297, 2021 May.
Article in English | MEDLINE | ID: covidwho-694859

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19) caused by infection with severe acute respiratory coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout China and in other countries since the end of 2019. The World Health Organization (WHO) has declared that the epidemic is a public health emergency of international concerns. The timely and appropriate measures for treating COVID-19 in China, which are inseparable from the contribution of traditional Chinese medicine (TCM), have won much praise of the world. PURPOSE: This review aimed to summarize and discuss the essential role of TCM in protecting tissues from injuries associated with COVID-19, and accordingly to clarify the possible action mechanisms of TCM from the perspectives of anti-inflammatory, antioxidant and anti-apoptotic effects. METHODS: Electronic databases such as Pubmed, ResearchGate, Science Direct, Web of Science, medRixv and Wiley were used to search scientific literatures. RESULTS: The present review found that traditional Chinese herbs commonly used for the clinical treatment of organ damages caused by COVID-19, such as Scutellaria baicalensis, Salvia miltiorrhizaSalvia miltiorrhiza, and ginseng, could act on multiple signaling pathways involved in inflammation, oxidative stress and apoptosis. CONCLUSION: TCM could protect COVID-19 patients from tissue injuries, a protection that might be, at least partially, attributed to the anti-inflammatory, antioxidant and anti-apoptotic effects of the TCM under investigation. This review provides evidence and support for clinical treatment and novel drug research using TCM.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , China , Humans , Inflammation , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL